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Predicting or controlling the state of an ecological community is a core global change 
challenge. Dynamical models provide one toolkit, but parameterizing these models 
can be challenging, and interpretation can be difficult. We here propose rewriting 
dynamical model parameters in terms of more interpretable and measurable functional 
traits and environmental variables (trait and environment mediated parameterizations; 
TEMPs). For prediction, this approach could help make interpretable forecasts of 
equilibrium community dynamics (species coexistence), invasibility surfaces (dynam-
ics due to biotic context), and responses to environmental change (dynamics due to 
abiotic context). For control, this approach could help identify policies that yield 
desired species and trait compositions through perturbations of the abundance of spe-
cies with certain traits, or of the environment.

Keywords: community dynamics, prediction, optimal control, dynamical model, 
forecast, functional trait

Introduction

Many contemporary challenges facing human societies are linked to predicting or con-
trolling the dynamics of ecological communities. These ecological problems are linked 
to a wide variety of cases including managing pests to maintain crop yields (Thomas 
1999), restoring or stabilizing ecosystems to historical baselines (Palmer et al. 1997), or 
improving human health through the manipulation of our microbiome (Sonnenburg 
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2015, Widder et al. 2016) and disease vectors (Johnson et al. 
2015) like malaria (Ferguson  et  al. 2010). Conceptual 
advances around prediction or control may then improve our 
ability to address these challenges with ecological theory.

Prediction and control of communities are closely linked 
(Fig. 1; see Box 1 for terminology). Prediction asks: ‘given 
that the community is in state A, and some (or no) perturba-
tions occur, does it then reach state B, C, or D, and by which 
trajectory?’. The end state is unknown in advance, but the 
community will follow one trajectory to reach it. The chal-
lenge is to select from a large or infinite number of potential 
trajectories. In contrast, control asks: ‘given that the com-
munity is in state A, how can we optimally ensure it reaches 
the desired state B, potentially along a particular trajectory?’ 
Here, the end state is specified, and the emphasis is on iden-
tifying which trajectory brings the community to that state 
and at what ‘cost’. The challenge is to select from the large or 
infinite number of possible trajectories that reach the speci-
fied end state. In the prediction problem, few, or zero, per-
turbations are considered; in the optimal control problem, a 
potentially infinite number of perturbations are considered in 
a sequence that drives the dynamics. Broadly, useful predic-
tions are a prerequisite for useful control, because in control 
one needs to predict the consequences of any given perturba-
tion on a community.

We focus on these challenges in dynamical models because 
they are widely used for community ecology. Dynamical 
models include relatively simple analytic models such as the 
generalized Lotka–Volterra (GLV) model (Chesson 2000, 
Barabás et al. 2016, Grilli  et al. 2017, Serván et al. 2018), 
as well as more complex simulation models such as the 
SORTIE-ND forest dynamics model (Pacala  et  al. 1996) 
or the COMETS microbial dynamic flux balance model 
(Dukovski et al. 2021).

We identify four key concerns relevant to prediction and 
control for dynamical models. First, dynamical models often 
have large numbers of parameters that scale super-linearly 
with the number of species considered (e.g. a matrix of inter-
action coefficients). The parameter space dimensionality 
problem can make it difficult to parameterize a model (e.g. 
Godoy and Levine (2014) who carried out numerous pair-
wise competition experiments to parameterize a dynamical 
model). Second, these parameters can sometimes be difficult 
to biologically interpret. For example, in the GLV model, the 
interaction coefficient parameters define per capita demo-
graphic effects of one species on another, which may not be as 
straightforward to interpret as a trait (e.g. Vucic-Pestic et al. 
(2010) who reduced parameter space dimensionality using a 
body mass trait). Third, these parameters may not be constant 
in time, and may change with environmental conditions. This 
variability implicitly requires re-measurement across environ-
ments, or decreased confidence in model extrapolations to 
new environments (e.g. Pennekamp et  al. (2018) who car-
ried out protist competition experiments at multiple growth 
temperatures). And fourth, from a control perspective, some 
of these parameters are difficult to imagine perturbing, while 
state variables like abundance or the environment are more 
easy to imagine perturbing (e.g. Angulo  et  al. (2019) who 
propose perturbing abundances instead of interaction coef-
ficients). For example, it may not be possible to perturb only 
the per capita impact of species 1 on species 2 without also 
causing unpredictable perturbations to other model parame-
ters; or it might not even be clear how such a complex param-
eter could be perturbed.

Here, we propose an alternate approach, trait-environ-
ment mediated parameterization (‘TEMP’). In TEMP, func-
tional trait and environment variables influence communities 
at the level of dynamical model parameters (e.g. determining 

Figure 1. Illustration of concepts for predicting or controlling the state of a community. Consider a state space of two species’ abundances, 
N1 and N2 along the axes and an initial state (A). (a) Predictability measures our ability to know the community’s future state. In this 
example, the community at state A could transition to several future states (B, C, or D) through one or more trajectories each. (b) 
Controllability reflects the possibility of reaching a desired state (here, B, with high abundance of species 1 and species 2). Directly shifting 
the community to the desired state (purple arrow) may require a high-cost perturbation (either high effort or long time), but one could 
instead identify a lower cost indirect perturbation (δA, green dashed arrow) to state A + δA. After this perturbation, the community will 
reach state B at minimal additional cost. In contrast, no perturbation can reach state E, which is then considered unreachable (infinite cost).
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competitive interactions in the GLV model), rather than at 
the level of community properties. While the underlying 
prediction and control problems are still naturally defined 
in terms of their state variables (abundances) and dynamical 
model parameters, rewriting those parameters in terms of trait 
and environment variables may provide a useful ‘middleman’ 
step. For prediction problems, TEMP enables reformula-
tion in terms of measurable and interpretable trait or envi-
ronment variables. For control problems, TEMP provides 
realistic leverage points for control problems via identifying 
species with certain traits or certain environments which can 
then have their abundances perturbed, or for reaching certain 
trait distribution targets as the outcome of control. Previous 
efforts to reduce dynamical model parameter set dimension-
ality have been limited to environment parameterizations 
(Lanuza  et  al. 2018, Maynard  et  al. 2020) or trait param-
eterizations (Vucic-Pestic  et  al. 2010) alone, and have not 
explored further interactive consequences for prediction and 
control problems.

There is a long history of using trait and environmental 
variables in community ecology (Gaudet and Keddy 1988, 
Keddy 1990, Lavorel and Garnier 2002, Violle et al. 2007). 
Examples include measuring community-level properties like 
trait dispersion patterns (Kraft and Ackerly 2010, Mayfield 
and Levine 2010, HilleRisLambers et al. 2012), predicting 
abundances (Shipley et  al. 2006, Laughlin et  al. 2012), or 
explaining processes related to species fitness (Laughlin et al. 
2020) and coexistence (Angert et al. 2009, Kraft et al. 2015, 
Kunstler et al. 2016). However, leveraging models to predict 
or control the future of a community beyond mechanistic 
explanation or pattern description has been less explored. 
TEMP thus build on recent calls to integrate functional traits 
with demography (Webb et al. 2010, Salguero-Gómez et al. 

2018, Laughlin et al. 2020, Chalmandrier et al. 2021) and 
to leverage traits for restoration and design-related problems 
in applied ecology (Widder  et  al. 2016, Wainwright  et  al. 
2018). It also builds on existing trait-focused methods for 
prediction (Laughlin  et  al. 2012, Laughlin and Messier 
2015, Warton  et  al. 2015, Li  et  al. 2021) and control 
(Laughlin 2014a, Giannini et al. 2017, Laughlin et al. 2018, 
Clark  et  al. 2021, Baranwal  et  al. 2022) by linking com-
munity ecology and traits at the level of dynamical model 
parameters.

Here, we outline how dynamical models can be parame-
terized via TEMP (part 1). This then allows common predic-
tion problems to be framed in terms of trait or environment 
variables (part 2). In turn, this allows common control prob-
lems to be addressed by identifying abundance perturbations 
to species with certain traits or to environment variables that 
differentially impact the abundance of species with certain 
traits (part 3). Because our goal primarily is to introduce 
concepts, we focus on two representative implementations 
of TEMP within the well-known generalized Lotka–Volterra 
dynamical model. The same approach could be taken for any 
other dynamical model when some of its parameters can be 
rewritten using TEMP.

Part 1. Trait and environment mediated 
parameterizations for dynamical models

The TEMP approach addresses the four key concerns rel-
evant to prediction and control described above. First, in 
TEMP, parameters can be treated as non-independent from 
one another because species with similar functional trait val-
ues or in similar environmental contexts should have similar 
responses, e.g. as in trait-based dynamic global vegetation 

Box 1. Glossary.

Action - a perturbation that we can choose to make to one or more of the state variables.
Controllable - the degree to which a system can be shifted its present state to a desired state within a specific time frame 
through actions.
Control policy - a specific set of actions that we could implement to achieve a desired state.
Desired state - the values of the state variables that we wish the community to reach after some amount of time.
Optimal – a term used to describe a control policy that minimizes or maximizes some criteria. For example, we could 
reduce the abundance of an invasive species by taking the action of manipulating the environment to be unsuitable 
(i.e. high cost, high effort, low chance of off-target effects), or take the action of manipulating the abundance of a 
natural enemy at key time points when the population of the invasive species is most sensitive (i.e. low cost, low effort, 
potential for off-target effects).
Perturbation – an external change to a state variable of a system. Here perturbations are considered with respect to the 
abundances of species with certain traits or the environment. A perturbation may occur continuously over time or 
impulsively.
Predictable - the potential for making accurate predictions about a system. High predictability means that the future 
state of the system can be more readily determined.
Prediction – a specific, quantitative, and falsifiable statement about the future state of a system.
Reachable - the potential for obtaining a certain state in the future, given a dynamical model and a current state, and 
any perturbations applied via a control policy. Not all desired states are necessarily reachable.
State variable - a variable that describes the current state of the system. Examples include the abundances of the species 
that are present in (or absent from) the community and the environment.
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models (van Bodegom et al. 2014). This non-independence 
drives correlations in model parameters and can, for some 
dynamical models and TEMP choices, reduce the effective 
number of variables that need to be independently estimated 
(Fig. 2). Second, TEMP facilitates interpretation of commu-
nity-level properties like competition or coexistence in terms 
of measurable functional traits, like body mass differences 
between species. Third, TEMP inherently accounts for how 
dynamical model parameters change with the environment. 
And fourth, TEMP helps move beyond the high dimension-
ality of control problems and the intractability of perturb-
ing individual parameters. TEMP can identify environment 
variables that can be perturbed to cause shifts in the underly-
ing dynamical model parameters, and also can identify spe-
cies with certain traits whose abundance could be usefully 
perturbed.

Here we illustrate the TEMP approach within the gen-
eralized Lotka Volterra (GLV) model. This model is widely 
used in theoretical community ecology (Barabás et al. 2016, 
Grilli et al. 2017, Saavedra et al. 2017, Angulo et al. 2021) 
and also for empirically describing communities (Buffie et al. 
2012, Stein et al. 2013, Coyte et al. 2015, Venturelli et al. 
2018). It is also closely linked to the Beverton-Holt model 
for discrete-time community dynamics (Beverton 1957) and 
its annual plant-seedbank derivatives (Venable  et  al. 1993, 

Godoy and Levine 2014, Weiss-Lehman  et  al. 2022). The 
GLV model includes density-independent species growth (the 
r parameter) and density-dependent competition (intra- and 
inter-specific) (the A parameter). We summarize this model 
and illustrate coupling it to TEMP in Box 2. We then focus 
on illustrating several TEMPs that could be used within the 
GLV model. These are simple demonstration TEMPs; more 
complex ones would likely be needed for real applications.

For competition, we explore two representative biological 
processes. In a limiting similarity TEMP, species with differ-
ent traits have more distinct niches, resulting in weaker inter-
action coefficient parameters (Macarthur and Levins 1967, 
Abrams 1975, Kraft et al. 2015). In a competitive hierarchy 
TEMP, a relatively higher trait value confers dominance over 
less extreme trait values (e.g. plant height in the context of 
light competition), resulting in hierarchically modular inter-
action coefficient parameters (Gaudet and Keddy 1988, 
Grime 2006, Violle et al. 2009, Mayfield and Levine 2010, 
Kunstler et al. 2012). Interaction coefficients also have been 
hypothesized to be environmentally dependent (Grime 1977, 
Goldberg and Barton 1992, Bimler et al. 2018, Lanuza et al. 
2018, Matías et al. 2018), e.g. fewer negative interactions in 
more extreme environmental conditions (Maestre et al. 2009, 
Weiss-Lehman et al. 2022); a version of the ‘stress gradient 
hypothesis’).

Figure 2. TEMP can sometimes reduce parameter estimation challenges in the GLV model. In the GLV model of n species parameterized 
in each of m discrete conditions, there are m n n2 +( )  free parameters to estimate. Alternatively with the TEMP described in Box 2, if k 
traits characterize each species, and j environmental variables can describe the conditions, then there are instead j nk+  free parameters 

to estimate. The fractional reduction in number of parameters to be estimated, is then f = - +( ) +( )( )1
2j nk m n n/ . This ratio is 

small when k + j/n ≪ mn, or when the number of traits and environmental parameters is smaller than the product of the number of species 
and conditions. In the simplest case where there is no environmental variation, this reduces to k ≪ n, i.e. a large reduction in parameters 
when the number of traits is much smaller than the number of species. Note that more complex TEMP or dynamical models might not 
yield similar fractional reductions.
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Box 2. Demonstration implementation of TEMPs in the generalized Lotka– Volterra model.

Dynamical model
Consider a regional pool of n species, with abundance of species as Ni , such that the composition of the community 

at time t1  is the vector 
�
N t N ti1 1( ) = ( ){ } . Suppose also that the environment is defined by a vector of variables, 

�
E t E tk1 1( ) = ( ){ } . The goal is to predict or control 

�
N t2( )  for t2 > t1. The generalized Lotka–Volterra model is a use-

ful baseline because it accounts for density-dependent effects of species on themselves and other species. The vector of 
abundances 

�
N  solves a linear system of differential equations:

dN t
dt

diag N t r AN t

�
� � �( )

= ( )( ) + ( )( ) �  (1)

where 
�r is the vector of density-independent growth rates, and A is the matrix of interaction coefficients, with entry Aij

representing the change in species i’s per capita growth rate for a unit change in the density of species j.

The trait-environment mediated parameterization (TEMP)

Eq. 1 parameters can be modeled by assuming links between trait and environment as:

A t f T T E tij i j( ) = ( )( )� � �
, , �  (2)

r t g T E ti i( ) = ( )( )� �
, �  (3)

Here, i and j index species, f and g are functions, 
�
Ti is a vector of trait values, and 

�
E is a vector of environmental variables. 

Equation 2 and 3 both incorporate potential temporal variation in A and 
�r  arising from temporal variation in the envi-

ronment. We explore two TEMPs for Eq. 2:

Limiting similarity TEMP: A t E t T Tij i j( )   /  = ( )( )´ - -( )j
� � �

1 �  (4)

Competitive hierarchy TEMP: A t E t If T Tij i j( ) = ( )( )´ > -j
� � �

{ ,
�� �
T T elsei j-( ) { }} 0 �  (5)

where j  is a scaling function. In our examples, we use:

j
� �
E Et t( )( ) = + ( )( )-1

1

�  (6)

which represents a ‘stress gradient’ in which competitive interactions become stronger at lower values of the environ-
ment. TEMPs can be ‘normalized’ to high intraspecific competition, such that if i j= , then Aij = -1 ; otherwise, for 
the off-diagonal entries, we divide them by the largest magnitude off-diagonal value. For the normalized limiting simi-
larity TEMP, we also impose a threshold such that if 

� �
T Ti j-  is smaller than the 10% quantile of all pairwise values, it 

is set to the 10% quantile value. This threshold avoids numerical issues where Aij  may become unrealistically large for 
species with very similar trait values. In the control examples, we explore a non-normalized version of limiting similarity 
where off-diagonal entries are not normalized and a quantile threshold is not used, as this permits for stronger species 
interactions that can be leveraged for control.

We also assume a simple linear TEMP for intrinsic growth rate, i.e.
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For species’ intrinsic growth rates, we explore a TEMP 
where performance depends directly on traits (Garnier et al. 
2018, Laughlin et al. 2020). Thus we illustrate cases where 
the r parameter is assumed to vary with trait values (e.g. 
faster growth for smaller organisms; (Adler  et  al. 2014)). 
Alternatively, this parameter could also vary with the envi-
ronment (Poorter and Markesteijn 2008, Wisnoski and 
Shoemaker 2022).

We find that variation in the biological process underlying 
the TEMP can lead to different parameter distributions in 
GLV models (Fig. 3). Under the hypothesis of competitive 
hierarchy, the distribution of interaction coefficients changes 
with environmental conditions, with potentially more nega-
tive interaction coefficients under lower environmental val-
ues (here corresponding to less stressful conditions). Within 
an environmental condition, the distribution of interaction 
coefficients is asymmetrical and highly skewed. Similar envi-
ronmental effects occur for the limiting similarity model, 
but the interaction coefficient distribution is symmetric and 
less skewed. These simulations demonstrate that even in a 

simple dynamical model, environmental context and differ-
ent hypotheses can yield different outcomes for the param-
eters, and in turn for prediction and control problems that 
we investigate below.

Part 2. Applications to prediction problems

Predicting abundance
After implementing a TEMP, the dynamical model is fully 
parameterized. This means it is possible to address any predic-
tion task that requires a dynamical model. There is an exten-
sive literature on the properties of parameterized dynamical 
models, especially the GLV model, which can now be lever-
aged (Ellner and Guckenheimer 2011). It is also possible to 
make predictions of abundance over time by applying the 
dynamical model (Fig. 4a). This can be useful for example 
if one is interested in the trajectory of the community either 
in the absence of environmental change or in the presence 
of it (e.g. stochastic environmental variation that prevents 
the community from reaching an attractor). However, if an 

r t Ti i( ) = a � �  (7)

We chose a simple linear form (dependent on traits, no environment dependence) for illustrative purposes. Real 
TEMPs will likely be more complex and multivariate.

Prediction

Predictions of the future abundance of all species can be determined by numerically integrating 
dN t
dt

� ( )
. In the 

GLV case, the fixed point can be found algebraically as (Serván et al. 2018):

N A ri ij i
* = - ´-1 �  (8)

Feasibility can be determined by assessing whether Ni
* > 0 for all species. Local stability can be determined by 

identifying whether perturbations are damped out near equilibria. In the GLV case, the fixed point can be found 
as:

max Re { }li( )( ) < 0 	� (9)

where {λi} are the eigenvalues of diag N Ai
*( )  (Barabás et al. 2016).

Short-term invasibility can be determined by assessing whether invader equilibrium abundance is non-nega-
tive, i.e.

lim
t iN t
®¥

( ) > 0 �  (10)

Calculated when Ni(t) is introduced at near-0 abundance and when all other species are close to equilibrium 
abundance.

Trait–environment relationships and environmental change responses can be determined by defining 

m N t T E ti i( ) ( )( ), ,  
� �

as a community-scale summary statistic of species abundances and traits, then comparing 

m t( ) � to 
�
E t( )  (Gaüzère et al. 2020a).
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attractor is reached by the community, for example if the 
environment does not change over time, one can usefully 
predict features of the equilibrium.

Predicting coexistence properties
Integrating TEMP into a dynamical model can lead to dif-
ferent coexistence outcomes depending on the mechanisms 
structuring the community (e.g. limiting similarity versus 
competitive hierarchy). We illustrate this application by 
focusing on five key properties of the community at equilib-
rium: equilibrium abundance, which indicates which species 
will be common or rare or absent (Maynard et al. 2020); rich-
ness: the number of coexisting species; feasibility: whether 

all species have abundances greater than zero (Grilli  et  al. 
2017); stability: whether all resident species tend to persist 
in the assemblage when perturbed to low abundance because 
the low-density growth rate of each species is positive, and 
abundances are resilient to small perturbations (May 1973, 
Grainger et al. 2019); and invasibility: whether non-resident 
species can become resident in the community, or equiva-
lently, whether non-resident species have positive low density 
growth rates (Serván et al. 2018). These analyses can also be 
replicated to predict all possible subcommunities (i.e. those 
with certain combinations of species absent) to assess alter-
nate assembly possibilities, but we do not explore this further 
here – see Blonder et al. 2022, Hofbauer and Schreiber 2022.

Figure 3. Predictions of interaction coefficients (the A parameters in the GLV model) under a limiting similarity TEMP (left) or a competi-
tive hierarchy TEMP (right), for different environmental values. Trait values (shown in plot margins) for n = 10 species are sampled from a 
uniform distribution (mean = 0, standard deviation = 1) and environmental values vary from E = 0 (top), and E = 5 (bottom).
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Using TEMP, coexistence properties can then be reframed 
in terms of trait and environment parameters. We find that 
qualitatively different coexistence outcomes can occur for the 
same values of trait or environment parameters if the TEMPs 
differ (Fig. 5). In a competitive hierarchy hypothesis TEMP, 
communities with higher mean trait values and under lower 
environment parameter values have a higher probability 
of feasibility (Fig. 5a) and lower realized richness (Fig. 5c) 
than those with low meant trait values under high environ-
ment parameter values. The probability of stability is higher 
for communities with higher mean trait values under higher 
environmental values (Fig. 5b). In a limiting similarity TEMP, 
communities with lower mean trait values and lower environ-
ment parameter values have a higher probability of feasibility 
(Fig. 5d) and lower realized richness (Fig. 5f ), while the prob-
ability of stability is higher under low environment parameter 
values for all mean trait values (Fig. 5e). These results illustrate 
how coexistence outcomes can be predicted for different com-
binations of trait and environment parameters.

Predicting invasibility and succession (response to biotic 
context)
A community’s susceptibility to invasion, and the identity of 
species that could enter or exit, can be predicted by construct-
ing invasibility surfaces from dynamical models, based on 
trait, environment, and density axes. An invasibility surface 
can be numerically estimated using TEMP by simulating the 

low-density introduction of an invader species across a grid 
of trait, density, and/or environment values, then estimating 
the invader’s equilibrium abundance. This surface thus iden-
tifies the contexts that would allow a species to invade at a 
given time point and is similar to a fitness landscape used 
in demographic predictions of evolutionary stable strategies 
(Hesse  et  al. 2008) but is explicitly trait-based (Laughlin 
and Messier 2015, Falster et al. 2017, Gaüzère et al. 2020b, 
Klausmeier et al. 2020). Any species with traits that confer 
a non-negative equilibrium abundance could invade that 
environment. The invasibility surface may change over time, 
either as biotic or abiotic context shifts. Plotting the invasi-
bility surface for different community compositions enables 
prediction of each community’s resistance to invasion.

We find that it is possible to predict the traits and environ-
ments that enable invasion in a dynamical model (Fig. 6). In 
a competitive hierarchy TEMP, we find that invaders with 
higher trait values under high environmental values (more 
stressful environmental conditions) have higher equilib-
rium abundances (Fig. 6a), which is consistent with the less 
complex interaction networks observed in these cases. In a 
limiting similarity TEMP, invaders with higher trait values 
and under high environmental values have higher equilib-
rium abundances (Fig. 6b), because the relative distribution 
of interaction coefficients skews towards weak interspe-
cific interactions, which are compatible with coexistence. 
However, in low environment values, species with certain 

Figure 4. Predictions of equilibrium abundance under a competitive hierarchy TEMP (a) or a normalized limiting similarity TEMP (b), 
assuming GLV dynamics. Trait values are sampled from a uniform distribution [0,1] and an environmental gradient [0,10]. Intrinsic growth 
rates follow a linear TEMP (ri = Ti). Initial abundances are randomly sampled from a univariate uniform distribution spanning [0,1]. 
Simulations are made for 100 replicate communities. x-axis values on inset panels indicate absolute abundances.
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traits can never invade the community because they are too 
similar to a resident species, while species with other trait val-
ues can exploit ‘gaps’ in the resident community. Thus, these 
invasibility surfaces allow explicit prediction of the traits of 
species that could successfully invade in each environment, 
or the species which would go locally extinct in each envi-
ronment and can thus identify potential pathways of succes-
sion or invasion. Note that these invasion surfaces are thus 
dependent on the instantaneous biotic context (number and 
identity of resident species) and will change as species then 
invade or go locally extinct.

Predicting trait consequences of environmental change 
(response to abiotic context)
Predicting the response of communities to environmental 
change is useful for assessing how environmental changes will 
affect trait distributions, as well as for forecasting changes 
in ecosystem functioning (Blonder et al. 2017, Lavorel and 
Garnier 2002). Both goals are closely linked by the concept 

of trait-environment relationships, which describe correla-
tions between trait values and environmental conditions 
based on their spatial distributions (Dray and Legendre 
2008, Bruelheide  et  al. 2018). Trait–environment relation-
ships emerge from dynamical models because the combina-
tions of species (with different traits) that coexist may change 
along environmental gradients (Laughlin and Messier 2015).

We find relatively simple trait–environment relationships 
yielding strong predictability under both competitive hier-
archy and limiting similarity TEMPs when environmental 
change was linear (Fig. 7a–b). However, when environmental 
change is periodic, trait-environment relationships showed 
alternate community trait states that reduced their predict-
ability under both competitive hierarchy and limiting similar-
ity TEMPs (Fig. 7c–d). In these cases, nonlinear trajectories 
of environmental change shift the interaction coefficient val-
ues over time, which in turn lead to community composition 
shifting. Because the periodic environmental change does not 
have a consistent direction, the community composition can 

Figure 5. Coexistence outcome predictions for 10-species communities predicted under a competitive hierarchy TEMP (a, b, c) or a nor-
malized limiting similarity TEMP (d, e, f ), assuming GLV dynamics. Trait values are sampled from a uniform distribution [0,1] and an 
environmental gradient [0,1]. Intrinsic growth rates follow a linear TEMP (ri = Ti). Initial abundances are randomly sampled from a uni-
variate uniform distribution spanning [0,1]. Simulations are made for 100 replicate communities. (a, d) The probability of feasibility is 
inferred from communities with different community trait mean and environment values. (b, e) The probability of stability is inferred from 
communities with the corresponding community mean trait value and environment value. (c, f ) The richness (averaged across replicates) is 
inferred from communities with the corresponding mean trait value and environment value.
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Page 10 of 19

end up lagging the equilibrium in complex ways. Thus, the 
observed trait–environment relationships depend strongly on 
the TEMP and the trajectory of environmental change.

Part 3. Applications to control problems

Improved prediction from dynamical models opens the pos-
sibility of ecological control by identifying action sequences 
of perturbations that would cause the community to reach a 
desired state. Such sequences could be optimal in the sense 
of requiring less time, money, or effort than all other possible 
perturbations (Fig. 1b). Optimal control theory has been used 
in numerous ecological problems. These challenges include 
shifting microbial community dynamics (Coyte et al. 2015, 
García-Jiménez et al. 2018, Angulo et al. 2019, Jones et al. 
2020), managing forest fire risk (McCarthy  et  al. 2001, 
Malo et al. 2021), reducing insect outbreaks (Desharnais et al. 
2001), sustainably managing fisheries (Chakraborty  et  al. 
2011, Boettiger  et  al. 2015, Brias and Munch 2021), and 
stabilizing predator/prey models (Albrecht  et  al. 1976, Liu 
and Rohlf 1998, Crespo and Sun 2002, Jiang and Lu 2007).

Action sequences can be identified from two classes of con-
trol policies. The first class of control policies is ‘impulsive’, 
reflecting discrete actions taken instantaneously. The second 
class is ‘continuous’, reflecting actions taken smoothly over 
time. Impulsive control may be more realistic for situations 
where discrete perturbations can be made, such as quickly 
adding or removing water from an environment (Beier et al. 
2012) or manipulating nutrient abundance (Treloar  et  al. 
2020), while continuous control may be more realistic for 

situations where variable perturbations are possible, such as 
releasing variable numbers of individuals of a species over 
time (Shea and Possingham 2000), or controlling environ-
mental conditions in a bioreactor (Angulo et al. 2019).

Theory-based control can augment the limited possi-
bilities that can be explored by expert knowledge or experi-
mentation. However, applying optimal control theory often 
requires knowledge of a fully parameterized dynamical 
model, e.g. model predictive control (Agachi  et  al. 2016), 
dynamic programming (Bertsekas 2000), or at least the abil-
ity to simulate time series from a hidden dynamical model, 
as in reinforcement learning (Recht 2019, Brias and Munch 
2021). TEMP could improve the interpretability and usabil-
ity of optimal control theory by identifying variables that 
can be perturbed (species abundances, environment). Many 
alternative candidate variables might be difficult to perturb 
independently (e.g. an interaction coefficient parameter). In 
contrast, it may be easier to perturb the environment or the 
abundance of a species with certain traits (e.g. an antibiotic 
that affects all bacteria using a certain metabolic pathway, or 
a trap that affects all animals of a certain size). Thus, trait 
and environment variables provide potentially useful starting 
points for identifying realistic control policies for community 
dynamics. In the below three examples, we show how to start 
in an arbitrary non-equilibrium state and then identify per-
turbations that reach a desired equilibrium state.

Applications to control problems
We find that the environment can be perturbed to cause the 
removal of an unwanted species (Fig. 8). This is analogous to a 

Figure 6. Invasibility surfaces predicted under the hypothesis of (a) a competitive hierarchy TEMP and (b) a normalized limiting similarity 
TEMP, both assuming GLV dynamics. Traits for n = 10 species are sampled from a univariate uniform distribution spanning [0,1] and 
environment gradient varying across the interval [0,10]. Intrinsic growth rates are set constant r = 0.5 for all species (to isolate the trait 
effects only on interaction coefficients). Initial abundances are set to 0.0005 and each simulation is allowed to come to equilibrium, after 
which a species with a different trait value (y-axis) is introduced in each environment, and its invasibility (equilibrium abundance) is esti-
mated and then plotted. An invasibility near zero indicates an unsuccessful invasion.

 16000706, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/oik.09415 by N

orth C
arolina State U

niversit, W
iley O

nline L
ibrary on [03/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 11 of 19

Figure 7. Predictions of trait–environment relationships under a competitive hierarchy TEMP (a, b) or a normalized limiting similarity 
TEMP (c, d), for either linear (a, c) or periodic (b, d) environmental change, assuming GLV dynamics. The upper panel shows the temporal 
change in environment in orange; the middle panel shows the temporal change in abundance-weighted mean trait values of the community 
in green; the lower panel shows the temporal trait–environment relationships (for each time point, the abundance-weighted mean trait 
values are plotted against the corresponding environmental value). Color indicates the time (from 0, dark blue to 300, yellow). Predictions 
are obtained for n = 10 species with traits sampled from a univariate uniform distribution spanning [0,1], and environments that change 
over time as shown. Intrinsic growth rates are set constant r = 0.5 for all species. Initial abundances are set to N = 0.0005.
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situation where a microbial community can be controlled by 
changing the temperature of the growth conditions. A TEMP 
for the interaction coefficients in a GLV model enables dis-
covery of a control policy based on shifting the environment 
over time. By choosing appropriate times to shift the environ-
ment, the interaction coefficients are also shifted transiently, 
which enables a target species to be driven to extinction by 
these interactions with no further intervention (Supporting 
information). After this perturbation, the original environ-
mental conditions can be restored, and a desired stable state 
can be maintained. However, this control strategy does have 
the tradeoff of causing the extinction of a small number of 
resident species. Additionally, it is possible in this scenario 
that the unwanted species could re-colonize from a meta-
community. In such a scenario, guaranteeing non-invasibility 
might require more sophisticated approaches.

We also find that TEMP can identify species with certain 
traits, which can be added or removed at specific times to 
shift the equilibrium abundances of other desired species, 
and/or cause the removal of undesired species (Fig. 9). This 
case is analogous to a situation where a microbial community 
can be controlled by selective inoculations (e.g. probiotics) or 
drug application (e.g. antibiotics), or a plant community can 
be controlled by selective introductions or weeding or herbi-
cide application. In this example, it is possible to use a TEMP 
to produce an invasibility surface to determine the combina-
tions of trait values of a test species that would successfully be 
able to invade a community and displace an undesired spe-
cies, while also increasing the abundance of other desired spe-
cies. In this example based on a limiting similarity TEMP, we 
select a test species to have a trait value slightly more extreme 

than that of the unwanted species, which enables it to exclude 
only the unwanted species. After the test species is introduced 
at low density and some time passes, the desired stable state 
is obtained ( Supporting information). While some resident 
species are lost, no more are lost (though with different iden-
tities) than in the uncontrolled dynamics.

We lastly find TEMP can identify species with certain 
traits, whose abundance can then be continuously perturbed 
to achieve a desired community trait composition and spe-
cies richness target (Fig. 10). This case is loosely analogous to 
a forest management problem where overall forest composi-
tion can be manipulated through selective removal (reduce 
abundance) or planting (increase abundance) of species with 
certain traits. We use a model predictive control algorithm 
to seek a community whose trait composition and species 
richness come close to the desired values, under a scenario 
where it is possible to perturb the abundance of two focal 
species over time whose traits are dissimilar from the target 
value (note that if one could control the abundance of spe-
cies whose traits were similar to the target value, the problem 
would be trivial). By leveraging a TEMP, we can find an abun-
dance-based control policy that comes close to the desired 
trait and richness targets. We then determine the success rate 
of model predictive control in perturbing a community from 
any of its stable and feasible fixed points to any other such 
fixed point, given the target state of maximal richness and 
an arbitrary trait composition. Under the limiting similar-
ity TEMP, control is successful in approximately 50–75% of 
cases regardless of the the trait target or the initial richness, 
when starting from random initial abundances (Supporting 
information). This is because most combinations of species 

Figure 8. Impulsive control to prevent an unwanted species (E) from coexisting in the community by perturbing the environment, assuming 
GLV dynamics. Traits for n = 10 species are sampled from a univariate uniform distribution spanning [0,1]. Intrinsic growth rates are set 
constant to r = 0.5 for all species. A limiting similarity TEMP without normalization is used to predict interaction coefficients. (a) The 
environment is either constant at a value of E = 8 (gray dashed line) or is perturbed to E = 1 (black line) from times t = 20 to t = 40. (b) In 
the unperturbed case, species d and e coexist with dominant species a and j. (c) In the perturbed case, the change in environment shifts the 
interaction coefficients via the TEMP, leading to negative growth rates for species d and e. Eventually e is excluded but d persists at low 
density. After the perturbation, d recovers and stably coexists with a and j.
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Page 13 of 19

Figure 10. Continuous optimal control to achieve a certain community-weighted mean trait value as a desired state via perturbing the 
abundances of species with certain traits, assuming GLV dynamics. Traits (T) for n = 10 species are sampled from a univariate uniform 
distribution spanning [0,1]. Intrinsic growth rates are set constant to r = 1 for all species and the environment is set to E = 5. Species interac-
tions are assumed to follow a limiting similarity TEMP. We assume that the desired state is a community-weighted mean trait value of T 
=0.5 with maximal richness, and that the abundances of two species with intermediate trait values (d and h) can be controlled. (a) A model 
predictive control algorithm identifies continuous abundance perturbations, ud and uh, which achieve the desired outcome. (b) The con-
trolled dynamics lead to transient changes in the abundance of the controlled species and the extinction of numerous other resident species. 
The best solution, which involves near-zero long-term perturbations, yields (c) a community weighted mean trait (black) that converges on 
the target (red) and (d) a species richness of seven, near the target (red). Note that the x-axis is square-root transformed to highlight early 
transient dynamics. For algorithm details, see the Supporting information.

Figure 9. Impulsive control to remove unwanted species and shift species abundances via the introduction of species with certain traits, 
assuming GLV dynamics. Traits for n = 10 species are sampled from a univariate uniform distribution spanning [0,1]. Intrinsic growth rates 
are set constant to r = 0.5 for all species and the environment is set to E = 9. Species interactions are assumed to follow the limiting similarity 
hypothesis TEMP. (a) In the unperturbed case, n = 9 of the total n = 10 species are introduced (all except j, which is absent from the com-
munity); in the perturbed case, j is introduced at low density at t = 25. j is selected to have a trait similar to i, enabling it to have a large 
effect on the community. (b) The unperturbed dynamics lead to the presence of unwanted species i. (c) The perturbed dynamics after the 
introduction of j result in species i becoming extinct. A beneficial side effect is that the abundance of g is also increased.
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can coexist. In contrast, under the competitive hierarchy 
TEMP, control is successful in approximately 75% of cases 
at low initial richness and only 10% at high initial richness, 
because most sub-dominant species are excluded, and trait 
targets cannot be reached. Thus, viable control policies can 
be found at least in the scenario outlined here, though further 
work would be needed to identify conditions under which 
this result generalizes.

Moving from concepts to applications

The above examples highlight the types of prediction and 
control problems that could eventually be addressed through 
integrating TEMP into dynamical models. They are meant to 
be illustrative of the key ideas, and as such are not meant to 
be representative of immediate real-world applications.

Applications to restoration
Ecological restoration is a key use case in that these problems 
often involve selection of species with certain traits and desired 
states with certain trait compositions, as well as scenarios of 
environmental change. While various trait-based restoration 
frameworks recently have emerged, TEMP provides differ-
ent insights. It differs from Laughlin (2014a), Giannini et al. 
(2017), Laughlin  et  al. (2018) and Funk (2021) in focus-
ing on the trajectories and underlying dynamical models, 
rather than only on the coexistence outcomes obtained, or 
on phenomenological descriptions of the assembly processes 
(e.g. biotic filters). It also differs from Maynard et al. (2020), 
Clark et al. (2021) and Blonder and Godoy (2022) because 
it relies on ecological hypotheses rather than mechanism-free 
machine learning. Last, it differs from Aoyama et al. (2022) 
in having an explicit focus on traits within dynamical models. 
As such, there may be opportunities for TEMP to comple-
ment these frameworks.

Statistical issues
To apply the TEMP approach to real data, a range of statisti-
cal issues will need to be solved, which are all widely acknowl-
edged (Lawton 1999, Simberloff 2004, Vellend and Agrawal 
2010, Mouquet et al. 2015, Shoemaker et al. 2020). These 
issues include identifying the appropriate type of TEMP to 
be used within the dynamical model of interest, which in 
turn requires identifying how many and which trait and envi-
ronment parameter(s) are relevant, and also statistically esti-
mating values for each such parameter. For simulation-based 
models that are already written in terms of trait and environ-
ment parameters (Falster et al. 2021), these issues are largely 
resolved, and control analyses like those we showed above are 
immediately tractable. For parameter-rich dynamical models 
that do not yet have obvious linkages to traits (e.g. the GLV 
model) there is a greater value for using TEMP. A few of the 
statistical estimation issues have been considered in the gen-
eral context of predicting trait variation along environmental 
gradients (Webb et al. 2010), assessing the dimensionality of 
trait spaces (Laughlin 2014b, Mouillot et al. 2021), exploring 
interactions between traits and the environment (Pistón et al. 

2019, Worthy  et  al. 2020, Li  et  al. 2021), and in fitting 
trait-informed plant community models (Clark et al. 2017, 
Chalmandrier et al. 2022, 2021).

Stochastic community dynamics can limit the utility of 
TEMP because they would reduce predictability and thus 
also controllability (Petchey  et  al. 2015, Pennekamp  et  al. 
2019, Shoemaker et al. 2020). Stochasticity is thought to be 
common in many communities (Hubbell 2001, Zhou and 
Ning 2017, Shoemaker  et  al. 2020). For prediction prob-
lems, uncertainty in the dynamics or the TEMP could be 
numerically propagated to uncertainty in community-level 
responses, which would provide estimates of the limits to 
predictability. Such work could identify which community-
level properties are the most realistic targets for prediction. 
For example, uncertainty in TEMP influencing interaction 
coefficients could be a key limit to skillful prediction of inva-
sibility surfaces. For control problems, identifying optimal 
policies is becoming possible when there is either stochastic-
ity in the underlying dynamics or noisy observations of the 
dynamics (e.g. for partially observable Markov decision pro-
cesses, Katt et al. 2017, García-Jiménez et al. 2018).

Low predictability of external drivers like the environment 
may also constrain the predictability and controllability of 
community dynamics. For example, annual rainfall amounts 
may alter the likelihood of coexistence among desert annual 
plants (Warner and Chesson 1985, Gremer et al. 2013) but 
rainfall may itself be highly unpredictable. This may in turn 
then also limit controllability, if the reachable states are more 
sensitive to this environmental variation than to any other 
perturbation.

Tradeoffs
Using TEMP will not always be an improvement over stan-
dard dynamical model approaches. For instance, if many 
traits are needed to describe species (Falster et al. 2021), or 
if the dynamical model has enough parameters that each 
require different traits, then the fractional reduction in 
parameters (Fig. 2) could be very small, or even negative. 
Additionally, using TEMP is always an approximation of a 
high-dimensional system with a low-dimensional representa-
tion. Approximation is almost certainly lossy, meaning that 
TEMP-based prediction and control will be less skillful than 
the alternative. However, the improvements in interpretabil-
ity and ease of measurement we have described for TEMP 
may justify their use in many cases.

Ethical issues
There are substantial moral and ethical implications to pro-
posing control policies, e.g. in malaria eradication (Pugh 
2016, Scoville et al. 2021). We must ask: who implements 
them, for whom are they implemented, who becomes 
impacted, and how likely are they to succeed safely with-
out causing unexpected negative consequences (Adams and 
Mulligan 2003, Borrini et al. 2004, Díaz et al. 2015)? The 
very language of ‘optimal’ control assumes that everyone 
can agree on a desired outcome, which may be unrealistic. 
Beneficial progress towards ecological control will only come 
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if accompanied by full consideration and collaborative reso-
lution of these moral questions.

We also are not proposing that all ecological communi-
ties should be predicted or controlled. We and others feel a 
moral discomfort with the prospect of subjugating nature in 
this way, as it may cause unexpected and undesirable con-
sequences (Crichton 1991, Simberloff and Stiling 1996). 
However, in the Anthropocene, humans are constantly 
inflicting large perturbations to natural systems, albeit often 
without full acknowledgment of their consequences (Corlett 
2015). Furthermore, restoration ecology and re-establish-
ment of nature in human-influenced landscapes is becom-
ing increasingly important in global change priorities (e.g. 
the United Nations Decade on Ecosystem Restoration). 
Consequently, there is a growing need for predicting commu-
nity change and the ability to control such changes towards 
a specific target. Becoming more precise about the conse-
quences of both intentional and unintentional perturbations 
– and consciously, rather than unconsciously, choosing con-
trol policies – will be critical to our future. Accepting the 
burden of control does not force us to unquestioningly accept 
ecomodernist ideas (Marris 2013) and pro-technology, pro-
capital policies that may not serve the vast majority of people 
and nature (Monbiot 2015). Rather, discovering the bound-
aries of predictability and controllability with TEMP will 
help to generate a healthier respect and humility for the natu-
ral world, and a renewed focus on building socio-ecological 
systems that embrace uncertainty.
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